Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Genes (Basel) ; 15(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38540381

RESUMO

The use of E-cigarettes, often considered a safer alternative to traditional smoking, has been associated with high rates of cellular toxicity, genetic alterations, and inflammation. Neuroinflammatory impacts of cigarette smoking during pregnancy have been associated with increased risks of adverse childhood health outcomes; however, it is still relatively unknown if the same propensity is conferred on offspring by maternal vaping during gestation. Results from our previous mouse inhalation studies suggest such a connection. In this earlier study, pregnant C57BL/6 mice were exposed daily to inhaled E-cig aerosols (i.e., propylene glycol and vegetable glycerin, [PG/VG]), with or without nicotine (16 mg/mL) by whole-body inhalation throughout gestation (3 h/d; 5 d/week; total ~3-week) and continuing postnatally from post-natal day (PND) 4-21. As neuroinflammation is involved in the dysregulation of glucose homeostasis and weight gain, this study aimed to explore genes associated with these pathways in 1-mo.-old offspring (equivalent in humans to 12-18 years of age). Results in the offspring demonstrated a significant increase in glucose metabolism protein levels in both treatment groups compared to filtered air controls. Gene expression analysis in the hypothalamus of 1 mo. old offspring exposed perinatally to E-cig aerosols, with and without nicotine, revealed significantly increased gene expression changes in multiple genes associated with neuroinflammation. In a second proof-of-principal parallel study employing the same experimental design, we shifted our focus to the hippocampus of the postpartum mothers. We targeted the mRNA levels of several neurotrophic factors (NTFs) indicative of neuroinflammation. While there were suggestive changes in mRNA expression in this study, levels failed to reach statistical significance. These studies highlight the need for ongoing research on E-cig-induced alterations in neuroinflammatory pathways.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Humanos , Gravidez , Feminino , Animais , Camundongos , Criança , Nicotina/toxicidade , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Aerossóis/efeitos adversos , RNA Mensageiro
4.
Toxics ; 10(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36548612

RESUMO

Black carbon (BC) is a major component of ambient particulate matter (PM), one of the six Environmental Protection Agency (EPA) Criteria air pollutants. The majority of research on the adverse effects of BC exposure so far has been focused on respiratory and cardiovascular systems in children. Few studies have also explored whether prenatal BC exposure affects the fetus, the placenta and/or the course of pregnancy itself. Thus, this contemporary review seeks to elucidate state-of-the-art research on this understudied topic. Epidemiological studies have shown a correlation between BC and a variety of adverse effects on fetal health, including low birth weight for gestational age and increased risk of preterm birth, as well as cardiometabolic and respiratory system complications following maternal exposure during pregnancy. There is epidemiological evidence suggesting that BC exposure increases the risk of gestational diabetes mellitus, as well as other maternal health issues, such as pregnancy loss, all of which need to be more thoroughly investigated. Adverse placental effects from BC exposure include inflammatory responses, interference with placental iodine uptake, and expression of DNA repair and tumor suppressor genes. Taking into account the differences in BC exposure around the world, as well as interracial disparities and the need to better understand the underlying mechanisms of the health effects associated with prenatal exposure, toxicological research examining the effects of early life exposure to BC is needed.

5.
J Reprod Immunol ; 154: 103737, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36084357

RESUMO

Globally, ∼50 % of women smoke during pregnancy and the prevalence of vaping is increasing among women of reproductive age. However, the health effects of vaping during pregnancy are largely unknown. This study examined the effects of e-cig constituents alone and in combination (propylene glycol [PG], vegetable glycerin [VG], and nicotine) on human placental tissue viability (MTT assay) and immunoassayed levels of placenta-derived biomarkers, i.e., 8-isoprostane (8-IsoP), heme oxygenase-1 (HO-1), interleukin-6 (IL-6), ß-estradiol (E2), progesterone (P4), allopregnanolone (AP), and brain-derived neurotrophic factor (BDNF). Placental explant cultures were exposed ex vivo for 24 h to media-containing either nicotine (0-5000 nM), PG/VG (0-8 % v/v at 50/50 ratio), or a combination of both. No effects on tissue viability were observed at PG/VG concentrations < 8 % (v/v), while viability significantly reduced at PG/VG concentrations ≥ 10 % (v/v); biomarker studies employed only non-cytotoxic doses. Exposure to PG/VG decreased levels of 8-IsoP, IL-6, and E2, and treatment with 2 % or 8 % PG/VG significantly reduced HO-1 levels, compared to non-treated controls. Exposure to nicotine alone at 2,500 nM and 5,000 nM reduced MTT activity by 20 % (P = 0.04) and 70 % (P < 0.001), respectively, and significantly increased (P < 0.001) levels of HO-1 and BDNF, compared to controls. Treatment with nicotine alone and in combination with PG/VG reduced IL-6 and E2 levels. Interestingly, nicotine-induced toxicity was attenuated by PG/VG addition to nicotine-treated groups. These studies demonstrate that e-cig constituents negatively impact the human placenta and alters production of critical placental biomarkers, suggesting that vaping is an unsafe alternative for pregnant women or their unborn fetus.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Gravidez , Feminino , Humanos , Nicotina/efeitos adversos , Fator Neurotrófico Derivado do Encéfalo , Interleucina-6 , Placenta , Propilenoglicol/farmacologia , Glicerol/farmacologia
6.
Toxicol Rep ; 8: 1607-1615, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522624

RESUMO

Pyridoxine is a co-factor in many enzymatic reactions and impacts of deficiency have been observed in affected populations. A possible modifying effect of pyridoxine deficiency on benzene toxicity was assessed in male B6C3F1 mice fed either a pyridoxine-deficient diet or a control diet. This treatment was combined with benzene inhalation exposure (100 ppm) or no benzene treatment. Pyridoxine-deficient mice exposed to 100 ppm benzene had significantly lower body, thymus and spleen weights. While total white blood cell counts, percentage of lymphocytes, hematocrit and hemoglobin levels were lower, the percentage of neutrophils was significantly higher in deficient and benzene-exposed mice compared to non-exposed controls. Hepatic CYP2E1 protein expression and activity in the deficient and exposed mice were also significantly higher compared to the non-exposed controls. A significant correlation between CYP2E1 activity and several hematological parameters was observed. These results demonstrated that pyridoxine deficiency significantly impacted benzene-induced hematotoxicity. Moreover, the observed agonistic effect of pyridoxinedeficiency and benzene inhalation exposure on CYP2E1 would seem to indicate an involvement of metabolism, but this needs to be further assessed.

7.
Front Nutr ; 8: 606782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33634160

RESUMO

Human diet comprises several classes of phytochemicals some of which are potentially active against human pathogenic viruses. This study examined available evidence that identifies existing food plants or constituents of edible foods that have been reported to inhibit viral pathogenesis of the human respiratory tract. SCOPUS and PUBMED databases were searched with keywords designed to retrieve articles that investigated the effect of plant-derived food grade substances (PDFGS) on the activities of human pathogenic viruses. Eligible studies for this review were those done on viruses that infect the human respiratory tract. Forty six (46) studies met the specified inclusion criteria from the initial 5,734 hits. The selected studies investigated the effects of different PDFGS on the infectivity, proliferation and cytotoxicity of different respiratory viruses including influenza A virus (IAV), influenza B virus (IBV), Respiratory syncytial virus (RSV), human parainfluenza virus (hPIV), Human coronavirus NL63 (HCoV-NL63), and rhinovirus (RV) in cell lines and mouse models. This review reveals that PDFGS inhibits different stages of the pathological pathways of respiratory viruses including cell entry, replication, viral release and viral-induced dysregulation of cellular homeostasis and functions. These alterations eventually lead to the reduction of virus titer, viral-induced cellular damages and improved survival of host cells. Major food constituents active against respiratory viruses include flavonoids, phenolic acids, tannins, lectins, vitamin D, curcumin, and plant glycosides such as glycyrrhizin, acteoside, geniposide, and iridoid glycosides. Herbal teas such as guava tea, green and black tea, adlay tea, cistanche tea, kuding tea, licorice extracts, and edible bird nest extracts were also effective against respiratory viruses in vitro. The authors of this review recommend an increased consumption of foods rich in these PDFGS including legumes, fruits (e.g berries, citrus), tea, fatty fish and curcumin amongst human populations with high prevalence of respiratory viral infections in order to prevent, manage and/or reduce the severity of respiratory virus infections.

9.
Artigo em Inglês | MEDLINE | ID: mdl-33126512

RESUMO

Maternal exposures during pregnancy affect the onset and progression of adult diseases in the offspring. A prior mouse study indicated that maternal tobacco smoke exposure affects hepatic fibrosis in adult offspring. Gutkha, a broadly used smokeless tobacco (ST) product, is widely used by pregnant woman in many countries. The objective of this murine study was to evaluate whether oral maternal exposure to gutkha during pregnancy alters non-alcoholic fatty liver disease (NAFLD) in adult offspring: risk factors for the progression of NAFLD to cirrhosis in adults remain elusive. Buccal cavity 'painting' of pregnant mice with gutkha began on gestational days (GD) 2-4 and continued until parturition. Beginning at 12 weeks of age, a subset of offspring were transitioned to a high-fat diet (HFD). Results demonstrated that prenatal exposure to gutkha followed by an HFD in adulthood significantly increased the histologic evidence of fatty liver disease only in adult male offspring. Changes in hepatic fibrosis-related cytokines (interleukin (IL)-1b and IL-6) and in hepatic collagen mRNA expression were observed when comparing adult male offspring exposed to gutkha in utero to those not exposed. These findings indicate that maternal use of gutkha during pregnancy affects NAFLD in adult offspring in a sex-dependent manner.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Efeitos Tardios da Exposição Pré-Natal , Tabaco sem Fumaça , Animais , Colágeno , Citocinas , Dieta Hiperlipídica , Feminino , Fígado/fisiopatologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Gravidez , Tabaco sem Fumaça/toxicidade
10.
Am J Respir Cell Mol Biol ; 63(6): 794-805, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32853043

RESUMO

Electronic-cigarette (e-cig) vaping is a serious concern, as many pregnant women who vape consider it safe. However, little is known about the harmful effects of prenatal e-cig exposure on adult offspring, especially on extracellular-matrix (ECM) deposition and myogenesis in the lungs of offspring. We evaluated the biochemical and molecular implications of maternal exposure during pregnancy to e-cig aerosols on the adult offspring of both sexes, with a particular focus on pulmonary ECM remodeling and myogenesis. Pregnant CD-1 mice were exposed to e-cig aerosols with or without nicotine, throughout gestation, and lungs were collected from adult male and female offspring. Compared with the air-exposed control group, female mice exposed to e-cig aerosols, with or without nicotine, demonstrated increased lung protein abundance of LEF-1 (lymphoid enhancer-binding factor 1), fibronectin, and E-cadherin, whereas altered E-cadherin and PPARγ (peroxisome proliferator-activated receptor γ) levels were observed only in males exposed to e-cig aerosols with nicotine. Moreover, lipogenic and myogenic mRNAs were dysregulated in adult offspring in a sex-dependent manner. PAI-1 (plasminogen activator inhibitor-1), one of the ECM regulators, was significantly increased in females exposed prenatally to e-cig aerosols with nicotine and in males exposed to e-cig aerosols compared with control animals exposed to air. MMP9 (matrix metalloproteinase 9), a downstream target of PAI-1, was downregulated in both sexes exposed to e-cig aerosols with nicotine. No differences in lung histology were observed among any of the treatment groups. Overall, adult mice exposed prenatally to e-cig aerosols could be predisposed to developing pulmonary disease later in life. Thus, these findings suggest that vaping during pregnancy is unsafe and increases the propensity for later-life interstitial lung diseases.


Assuntos
Aerossóis/farmacologia , Sistemas Eletrônicos de Liberação de Nicotina , Efeitos Tardios da Exposição Pré-Natal/patologia , Fatores Sexuais , Animais , Feminino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pneumopatias/induzido quimicamente , Pneumopatias/patologia , Camundongos , Nicotina/farmacologia , Gravidez
11.
Environ Health Perspect ; 128(4): 47006, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32293200

RESUMO

BACKGROUND: In an effort to decrease the rates of smoking conventional tobacco cigarettes, electronic cigarettes (e-cigarettes) have been proposed as an effective smoking cessation tool. However, little is known about their toxicological impacts. This is concerning given that e-cigarette use is perceived as less harmful than conventional tobacco cigarettes during pregnancy for both the mother and fetus. OBJECTIVE: The goal of this study was to test the neurodevelopmental consequences of maternal e-cigarette use on adult offspring behavior and neuroimmune outcomes. METHODS: Pregnant female CD-1 mice were randomly assigned to one of three treatment groups (n=8-10 per group) and exposed daily to either filtered air, propylene glycol and vegetable glycerol (50:50 PG/VG vehicle), or to PG/VG with 16mg/mL nicotine (+Nic). Whole-body exposures were carried out for 3 h/d, 7 d/week, from gestational day (GD)0.5 until GD17.5. Adult male and female offspring (8 weeks old) were assessed across a battery of behavioral assessments followed by region-specific quantification of brain cytokines using multiplex immunoassays. RESULTS: Adult offspring of both sexes exposed to +Nic exhibited elevated locomotor activity in the elevated plus maze and altered stress-coping strategies in the forced swim task. Moreover, male and female offspring exposed to PG/VG with and without nicotine had a 5.2% lower object discrimination score in the novel object recognition task. In addition to differences in offspring behavior, maternal e-cigarette exposure with nicotine led to a reduction in interleukin (IL)-4 and interferon-gamma (IFNγ) in the diencephalon, as well as lower levels of hippocampal IFNγ (females only). E-cigarette exposure without nicotine resulted in a 2-fold increase of IL-6 in the cerebellum. DISCUSSION: These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Inflamação/imunologia , Locomoção/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Estresse Psicológico/psicologia , Aerossóis/análise , Animais , Modelos Animais de Doenças , Feminino , Glicerol/efeitos adversos , Inflamação/induzido quimicamente , Camundongos , Nicotina/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Propilenoglicol/efeitos adversos , Distribuição Aleatória , Estresse Psicológico/induzido quimicamente
12.
Food Chem Toxicol ; 138: 111245, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32145355

RESUMO

It appears that electronic cigarettes (EC) are a less harmful alternative to conventional cigarette (CC) smoking, as they generate substantially lower levels of harmful carcinogens and other toxic compounds. Thus, switching from CC to EC may be beneficial for smokers. However, recent accounts of EC- or vaping-associated lung injury (EVALI) has raised concerns regarding their adverse health effects. Additionally, the increasing popularity of EC among vulnerable populations, such as adolescents and pregnant women, calls for further EC safety evaluation. In this state-of-the-art review, we provide an update on recent findings regarding the neurological effects induced by EC exposure. Moreover, we discuss possible neurotoxic effects of nicotine and numerous other chemicals which are inherent both to e-liquids and EC aerosols. We conclude that in recognizing pertinent issues associated with EC usage, both government and scientific researchers must address this public health issue with utmost urgency.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Síndromes Neurotóxicas , Nicotina/toxicidade , Adolescente , Aerossóis/efeitos adversos , Animais , Encéfalo/efeitos dos fármacos , Feminino , Radicais Livres/toxicidade , Humanos , Metais Pesados/toxicidade , Nanopartículas/toxicidade , Gravidez , Saúde Pública , Fumantes , Fumar , Oligoelementos/toxicidade , Vaping/efeitos adversos
13.
J Racial Ethn Health Disparities ; 7(4): 698-739, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31974734

RESUMO

BACKGROUND: Economic and social marginalization among American Indians and Alaska Natives (AI/ANs) results in higher chronic disease prevalence. Potential causal associations between toxic environmental exposures and adverse health outcomes within AI/AN communities are not well understood. OBJECTIVES: This review examines epidemiological literature on exposure to toxicants and associated adverse health outcomes among AI/AN populations. METHODS: PubMed, Embase, Cochrane, Environment Complete, Web of Science Plus, DART, and ToxLine were searched for English-language articles. The following data were extracted: lead author's last name, publication year, cohort name, study location, AI/AN tribe, study initiation and conclusion, sample size, primary characteristic, environmental exposure, health outcomes, risk estimates, and covariates. RESULTS: About 31 articles on three types of environmental exposures met inclusion criteria: persistent organic pollutants (POPs), heavy metals, and open dumpsites. Of these, 17 addressed exposure to POPs, 10 heavy metal exposure, 2 exposure to both POPs and heavy metals, and 2 exposure to open dumpsites. Studies on the Mohawk Nation at Akwesasne; Yupik on St. Lawrence Island, Alaska; Navajo Nation; Gila River Indian Community; Cheyenne River Sioux; 197 Alaska Native villages; and 13 tribes in Arizona, Oklahoma, North Dakota, and South Dakota that participated in the Strong Heart Study support associations between toxicant exposure and various chronic conditions including cardiovascular conditions, reproductive abnormalities, cancer, autoimmune disorders, neurological deficits, and diabetes. DISCUSSION: The complex interplay of environmental and social factors in disease etiology among AI/ANs is a product of externally imposed environmental exposures, systemic discrimination, and modifiable risk behaviors. The connection between environmental health disparities and adverse health outcomes indicates a need for further study.


Assuntos
/estatística & dados numéricos , Doença Crônica/etnologia , Doença Crônica/epidemiologia , Saúde Ambiental , Substâncias Perigosas/efeitos adversos , Nível de Saúde , Indígenas Norte-Americanos/estatística & dados numéricos , Feminino , Humanos , Masculino , Prevalência , Fatores de Risco , Estados Unidos/epidemiologia , Estados Unidos/etnologia
14.
Inhal Toxicol ; 30(9-10): 381-396, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30572762

RESUMO

Accumulating evidence indicates the developing central nervous system (CNS) is a target of air pollution toxicity. Epidemiological reports increasingly demonstrate that exposure to the particulate matter (PM) fraction of air pollution during neurodevelopment is associated with an increased risk of neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD). These observations are supported by animal studies demonstrating prenatal exposure to concentrated ambient PM induces neuropathologies characteristic of ASD, including ventriculomegaly and aberrant corpus callosum (CC) myelination. Given the role of the CC and cerebellum in ASD etiology, this study tested whether prenatal exposure to concentrated ambient particles (CAPs) produced pathological features in offspring CC and cerebella consistent with ASD. Analysis of cerebellar myelin density revealed male-specific hypermyelination in CAPs-exposed offspring at postnatal days (PNDs) 11-15 without alteration of cerebellar area. Atomic absorption spectroscopy (AAS) revealed elevated iron (Fe) in the cerebellum of CAPs-exposed female offspring at PNDs 11-15, which connects with previously observed elevated Fe in the female CC. The presence of Fe inclusions, along with aluminum (Al) and silicon (Si) inclusions, were confirmed at nanoscale resolution in the CC along with ultrastructural myelin sheath damage. Furthermore, RNAseq and gene ontology (GO) enrichment analyses revealed cerebellar gene expression was significantly affected by sex and prenatal CAPs exposure with significant enrichment in inflammation and transmembrane transport processes that could underlie observed myelin and metal pathologies. Overall, this study highlights the ability of PM exposure to disrupt myelinogenesis and elucidates novel molecular targets of PM-induced developmental neurotoxicity.


Assuntos
Poluição do Ar/efeitos adversos , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Ferro/análise , Material Particulado/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Animais , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Feminino , Masculino , Camundongos , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Gravidez
15.
Methods Mol Biol ; 1803: 169-180, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29882139

RESUMO

Syngeneic murine tumor models have been widely used by researchers to assess changes in tumor susceptibility associated with exposure to toxicants. Two common tumor models used to define host resistance against transplanted tumors in vivo are EL4 mouse lymphoma cells (established from a lymphoma induced in a C57BL/6 mouse by 9,10-dimethyl-1,2-benzanthracene) and B16F10 mouse melanoma cells (derived through variant selection from a B16 melanoma arising spontaneously in C57BL/6 mice). While C57BL/6 mice are commonly used as the syngeneic host for these tumor models, other mouse strains such as B6C3F1 (C57BL/6 × C3H) can also be used. Tumor challenge of the host can be done by subcutaneous (sc) or intravenous (iv) injection, depending upon whether the effects are to be examined on local tumor development or experimental/artificial metastasis. Materials and methodologies for injection of both tumor cell models are described in detail in the subsequent sections.


Assuntos
Neoplasias/imunologia , Testes de Toxicidade/métodos , Animais , Linhagem Celular Tumoral , Determinação de Ponto Final , Injeções , Masculino , Camundongos , Carga Tumoral
16.
Appl In Vitro Toxicol ; 4(4): 379-388, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30637297

RESUMO

Approximately 1 million women smoke during pregnancy despite evidence demonstrating serious juvenile and/or adult diseases being linked to early-life exposure to cigarette smoke. Susceptibility could be determined by factors in previous generations, that is, prenatal or "maternal" exposures to toxins. Prenatal exposure to airborne pollutants such as mainstream cigarette smoke has been shown to induce early-life insults (i.e., gene changes) in Offspring that serve as biomarkers for disease later in life. In this investigation, we have evaluated genome-wide changes in the lungs of mouse Dams and their juvenile Offspring exposed prenatally to mainstream cigarette smoke. An additional lung model was tested alongside the murine model, as a means to find an alternative in vitro, human tissue-based replacement for the use of animals in medical research. Our toxicogenomic and bio-informatic results indicated that in utero exposure altered the genetic patterns of the fetus, which could put them at greater risk for developing a range of chronic illnesses in later life. The genes altered in the in vitro, cell culture model were reflected in the murine model of prenatal exposure to mainstream cigarette smoke. The use of alternative in vitro models derived from human medical waste tissues could be viable options to achieve human endpoint data and conduct research that meets the remits for scientists to undertake the 3Rs practices.

17.
Toxicol Sci ; 162(1): 276-286, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29161446

RESUMO

Recent epidemiological data indicate that the popularity of electronic cigarettes (e-cigarettes), and consequently nicotine use, is rising in both adolescent and adult populations. As nicotine is a known developmental neurotoxin, these products present a potential threat for those exposed during early life stages. Despite this, few studies have evaluated the toxicity of e-cigarettes on the developing central nervous system. The goal of this study was to assess neurotoxicity resulting from early-life exposure to electronic cigarette aerosols in an in vivo model. Specifically, studies here focused on neuro-parameters related to neuroinflammation and neurotrophins. To accomplish this, pregnant and neonatal C57BL/6 mice were exposed to aerosols produced from classic tobacco flavor e-cigarette cartridges (with [13 mg/ml] and without nicotine) during gestation (∼3 weeks) and lactation (∼3 weeks) via whole-body inhalation. Exposure to e-cigarette aerosols with and without nicotine caused significant reductions in hippocampal gene expression of Ngfr and Bdnf, as well as in serum levels of cytokines IL-1ß, IL-2, and IL-6. Exposure to e-cigarette aerosols without nicotine enhanced expression of Iba-1, a specific marker of microglia, in the cornus ammonis 1 region of the hippocampus. Overall, our novel results indicate that exposure to e-cigarette aerosols, with and without nicotine, poses a considerable risk to the developing central nervous system. Consequently, e-cigarettes should be considered a potential public health threat, especially early in life, requiring further research and policy considerations.


Assuntos
Aerossóis/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Hipocampo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fatores de Crescimento Neural/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transcriptoma/efeitos dos fármacos , Administração por Inalação , Animais , Animais Recém-Nascidos , Citocinas/sangue , Feminino , Perfilação da Expressão Gênica , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Microglia/imunologia , Microglia/metabolismo , Nicotina/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo
18.
J Expo Sci Environ Epidemiol ; 27(2): 221-226, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27168392

RESUMO

Exposure to fine particulate matter (PM2.5) and black carbon (BC) have been linked to negative health risks, but exposure among professional taxi drivers is understudied. This pilot study measured drivers' knowledge, attitudes, and beliefs (KAB) about air pollution compared with direct measures of exposures. Roadside and in-vehicle levels of PM2.5 and BC were continuously measured over a single shift on each subject, and exposures compared with central site monitoring. One hundred drivers completed an air pollution KAB questionnaire, and seven taxicabs participated in preliminary in-cab air sampling. Taxicab PM2.5 and BC concentrations were elevated compared with nearby central monitoring. Average PM2.5 concentrations per 15-min interval were 4-49 µg/m3. BC levels were also elevated; reaching>10 µg/m3. Fifty-six of the 100 drivers surveyed believed they were more exposed than non-drivers; 81 believed air pollution causes health problems. Air pollution exposures recorded suggest that driver exposures would likely exceed EPA recommendations if experienced for 24 h. Surveys indicated that driver awareness of this was limited. Future studies should focus on reducing exposures and increasing awareness among taxi drivers.


Assuntos
Poluentes Atmosféricos/análise , Conhecimentos, Atitudes e Prática em Saúde , Exposição Ocupacional/análise , Material Particulado/análise , Fuligem/análise , Emissões de Veículos/análise , Adolescente , Adulto , Poluição do Ar/análise , Automóveis , Emigração e Imigração , Monitoramento Ambiental/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Percepção , Projetos Piloto , Inquéritos e Questionários , Adulto Jovem
19.
Int J Environ Res Public Health ; 13(4): 417, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27077873

RESUMO

Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13-16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4-6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Lobo Frontal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Transcriptoma/efeitos dos fármacos , Administração por Inalação , Animais , Feminino , Perfilação da Expressão Gênica , Glicerol/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nicotina/efeitos adversos , Gravidez , Propilenoglicol/efeitos adversos
20.
J Immunotoxicol ; 13(1): 77-83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25640695

RESUMO

Cigarette smoke exposure has been considered a risk factor for infection with Chlamydia pneumoniae. C. pneumoniae infection is associated with respiratory tract infection and chronic respiratory disease, which is a serious public health concern. To determine whether prior exposure to cigarette smoke worsens C. pneumoniae infection (specifically, increases infectious burden and systemic dissemination) as well as alters cytokine responses in mice, adult female C57BL/6 mice were exposed to either filtered air (FA) or mainstream cigarette smoke (MCS) (15 mg/m(3), total suspended particulates) for 5 days/week for 2 weeks and then infected with C. pneumoniae (10(5) IFU) via intratracheal instillation. Mice were euthanized on Days 7, 14 or 26 post-infection (p.i.). Chlamydial burdens in the lungs and spleen were quantified by quantitative PCR (qPCR) and histologic analyses were performed; cytokine levels (TNFα, IL-4, IFNγ) in bronchoalveolar lavage fluid and serum were assayed by enzyme-linked immunosorbent assay (ELISA). The results indicated that: (1) mice exposed to either FA or MCS had similar chlamydial burdens in the lungs and spleen on Days 14 and 26 p.i.; (2) proximal and distal airway inflammation was observed on Day 14 p.i. in both FA and MCS mice, but persisted in MCS mice until Day 26 p.i.; FA exposed mice demonstrated resolution of distal airway inflammation; and (3) MCS mice displayed higher serum levels of IFNγ and IL-4 on Day 26 p.i. These findings indicate that exposure of mice to MCS (at a concentration equivalent to smoking < 1 pack cigarettes/day) led to greater C. pneumoniae-induced inflammation, as indicated by prolonged inflammatory changes.


Assuntos
Chlamydophila pneumoniae/fisiologia , Pulmão/imunologia , Pneumonia Bacteriana/imunologia , Fumar/efeitos adversos , Animais , Citocinas/sangue , Feminino , Humanos , Controle de Infecções , Mediadores da Inflamação/sangue , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Projetos Piloto , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA